Patent searching – overview and importance

In 2015 there were 629,647 patent applications filed in the United States alone, which is more than 1,700 applications per day. Of these, the US Patent and Trademark Office granted 325,979, which is close to 900 per day. It is common in R&D centres for an innovator to do a preliminary patent search for his or her invention. However, he or she may search and find nothing – results require a professional searcher. The evolution of technology through incremental inventions has made it tough for innovators – and even tougher for professional searchers – to identify appropriate prior art in a fixed timeframe.

Apple, Google and Samsung have set significant examples in recent lawsuits. In the IP industry, the slightest detail can be determinative in a million-dollar lawsuit. Therefore, a robust, efficient and quick search mechanism for identifying patents can make a huge difference to businesses.

Evolution of patent searching – approaches and tools

From manually searching for patents in patent office libraries to the use of complex algorithms, patent searching has matured considerably. A new generation of patent analysis tools has emerged that apply big-data analytics, cloud technologies, modern software development and data-improvement techniques. With the advent of Symantec Search algorithms, developers have created a new milestone in patent searching.

Patents may be broadly classified as either utility patents or design patents. Searchers may perform a utility or design patent search to identify relevant prior art. Since patent documents are classified (eg, International Patent Classifications and Cooperative Patent Classifications (CPCs)), searches for a given concept must not be limited to a keyword– sometimes a concept can be expressed perfectly using a classification symbol. While utility patents are classified into CPCs and national patent classes, design patents are generally classified into design classes such as the national design classes in the United States, Canada and Japan and the Locarno Classification. For best practice, patents should be searched for using a combination of keywords and classes. Patent search databases and tools such as Questel Orbit, Thomson Innovation and the World Intellectual Property Organisation’s Global Design Database are capable of combining concepts in a user-friendly manner in order to perform prior art searches.

Mechanical engineering

Generally speaking, for mechanical engineers, technology becomes simpler when looking at mechanisms. In the field of mechanical engineering, inventions are supported and described by corresponding images. Further, in case of an incremental invention, a descriptive patent drawing can assist in the understanding and implementation of the invention.

As a patent analyst, I perform patent searches to assist R&D centres globally. In my experience, while searching for a mechanical or mechanical-allied technology, a good patent image is highly useful. Thousands of patents can be screened based on their images and those which are useful can be identified for clients. Further, patent search times are drastically reduced.

Next-generation patent searching

Imagine if examiners had a tool for uploading images of an invention and retrieving similar filed patents worldwide during patent analysis. Even better, imagine if that tool could accept hand-drawn images and return visually similar patents.

Introducing reverse image searching

In lay terms, image search engines (eg, reverse image search engines) are special search engines which do not require keywords to find pictures. Instead, they find images similar to those entered by the searcher. Reverse image searching includes an option to use images along with attributes such as tags, qualifiers, domains and categories, which allows the reverse image search algorithm to narrow search process and yield better results.

When searching using an image, results may include:

  • similar images;
  • sites that include the image; and
  • other sizes of the image.

Searches using images work best when the image is likely to show up in other places on the Internet. Therefore, famous landmarks are likely to yield more hits than personal images like family photos.

However, the real task is identifying the correct document based on the uploaded image. Visually similar images and documents comprising those images are easily retrieved, but establishing their relevance requires manual analysis.

Even though the first reverse image search tool from Google was introduced in 2001, these tools have yet to receive global acceptance for patent searching, which may be due to lack of awareness of or lack of appropriate search algorithms used in these tools. Our next report will take a closer look at the types of reverse image search tool available on the Internet, their application in patent searching and their limitations and challenges.

This article first appeared in IAM. For further information please visit